Derek Snider at dual beam stage with star wars R2D2 toy

Semiconductor and Electronic Failure Analysis Blog

Welcome to the Semiconductor and Electronics Failure Analysis Blog, and discussion forum for all things related to electrical, integrated circuit (IC) board and electronics failure analysis.  Please subscribed to our feed and feel free to leave a comment or question. Thanks for visiting.

Electron Microscopy Services for Intellectual Property Analysis

electron microscopy services Today’s cutting edge microelectronics are twisting, labyrinthine networks of nanotechnology, with layers upon layers of intertwined metallic and crystalline structures. Gone are the days when one could put a device under an optical microscope and, over the course of a few hours, sketch out a relatively accurate functional schematic; the process technology used in creating a modern microprocessor or memory device creates features so small that they are physically impossible to resolve with optical microscopy, since the wavelength of visible light is so much larger than the features being imaged. Higher resolution electron microscopes can easily resolve the nanometer-scale features on these devices, but the ultra-high magnifications needed to do so mean that only very small areas of the die can be viewed at a given time, an equally restrictive roadblock to understanding a circuit as a whole. Performing intellectual property analysis on a device in order to protect patents or reverse engineer obsolete parts which are no longer manufactured is, in many cases, an exercise in competing compromises; one can get a highly focused analysis with electron microscopy that is very limited in scope, or a very broad look at a device that may lack the necessary depth for certain investigations. Fortunately, IAL is offering new electron microscopy services that work to bridge the gap between viewing large areas and imaging at high resolution.

                When performing intellectual property analysis to determine whether or not patents have been infringed upon, it is often important to closely study the materials and processes used to construct a specific device; the minutiae of how a transistor is formed can be crucial to the claims of a given patent. Traditionally mechanical cross-section and SEM inspection have been used to gather this data; however, these techniques have limited precision and resolution, and are not ideal for differentiating very small constructions (for example, the layers of oxide and nitride used as tunneling barriers in memory cells). Furthermore, a traditional mechanical section is not a good fit for performing elemental analysis of the layers of a device, as the interaction volume of the electron beam is so large that isolating individual layers to determine their composition is impossible. To better serve this market segment, IAL has added focused ion beam (FIB) and scanning transmission electron microscopy (STEM) capabilities. Rather than performing a mechanical cross-section (which involves polishing an entire integrated circuit until enough material has been removed that the device of interest is visible), the FIB can be used to perform targeted micro-sections, lifting out areas of the device only a few microns wide for analysis. These micro-sections are then imaged using STEM, which can provide the sub-nanometer resolution necessary to resolve even the most cutting edge devices (the image above is of a 22-nanometer tri-gate process, Intel’s solution to the challenges posed by process shrinks beyond the 32-nanometer node). STEM must be performed on exceptionally thin samples (for best resolution, samples must be 100 nanometers thick or less); a byproduct of working with such thin samples is increased spatial resolution for elemental analysis tools like energy dispersive spectroscopy, since the size of the sample provides a natural limit on the interaction volume of the electron beam. As a result, not only can very small, thin layers be imaged with higher clarity, their composition can also be analyzed.

                Intellectual property analysis does not always mean diving in to a sample in order to determine whether patents have been infringed upon. There are vast segments of industry that rely on obsolete or legacy components, due to the extensive characterization history available. Many of these devices are no longer supported by their original manufacturer; that said, the demand for these components is still present. There are a limited number of solutions for engineers who need to source these obsolete components. They may turn to third party supplier and the “grey market”, where they have no guarantee of a component’s remaining lifespan or authenticity; others may choose to reverse engineer the device and have it manufactured by another foundry. In order to reverse engineer such a component, an engineer must be able to capture the layout and schematic of a device; SEM mosaics, one of the new electron microscopy services offered at IAL, provides a significant portion of the data needed to do so. By creating high resolution, large area composite images of functional blocks (or, in some cases, entire die), it is possible to grab the floor plan of a device with minimal engineering interaction. In some cases, these composite images can even be used as the input to specialized image recognition software that converts the images directly into GDSII layout files, cutting down immensely on the amount of engineering time necessary to recover an obsolete IC.

                Electron microscopy services can provide key data for many types of intellectual property analysis; patent research, reverse engineering, and many others benefit from the rapid, high resolution imaging and compositional analysis techniques made possible by the electron microscope. As technology continues to push the boundaries of size, creating smaller and smaller features, electron microscopy will only continue to grow in value.

Read 6306 times

Search Our Site

ISO-9001:2007 Certified


Need to Determine the Root Cause of a Failure in an Electronic Component?  We get back to you with a quote in 24 hours once we have your information.

Request Failure Analysis Quote