Since the demonstration of the first integrated circuit in the late 1950s, semiconductor technology has developed explosively, growing at an exponential rate. The guidance computers that were used in the Apollo space program, performing the critical calculations necessary to land a manned spacecraft on the moon, have been completely dwarfed in complexity, memory capacity, and processing power by modern video game consoles and handheld MP3 players. Where an early microchip might contain several hundred devices, today's IC is home to billions of transistors. Even though semiconductor technology has come so far from its inception, it is not yet infallible, and failures do occur as a result of improper processing, misuse, or simply due to the inexorable march of time. Finding a defect on such a complex device may bring to mind clichéd sayings about needles and haystacks; however, the process of semiconductor failure analysis brings together a comprehensive toolset, a breadth of industry experience, and a certain degree of intuition, all in order to find that one in a billion defect.