Derek Snider at dual beam stage with star wars R2D2 toy

Semiconductor and Electronic Failure Analysis Blog

Welcome to the Semiconductor and Electronics Failure Analysis Blog, and discussion forum for all things related to electrical, integrated circuit (IC) board and electronics failure analysis.  Please subscribed to our feed and feel free to leave a comment or question. Thanks for visiting.

Using FIB for Wafer Lot acceptance and Design Verification

FIB (Focused Ion Beam) technology has certainly come a long way since its introduction in 1975. I recall very well the first encounter I had with the technology as a young ASIC designer in the late 80s. It seemed the most magical thing I had ever encountered: the ability to rework semiconductor devices, not only by being able to cut metallization lines (to correct shorts, for example, as had been done previously on a mechanical probe station), but also to add new conductive paths. FIB literally provided a designer the ability to add what are essentially blue wires to correct bugs in a design, as could be done with a board level product. FIB truly opened a whole new world.


Printed Circuits Defects - Analysis and Detection

Printed Circuits Defects AnalysisA failure analysis lab employes a wide variety of techniques to search for defects in integrated circuits. Last week, we had seen what goes on inside a failure analysis lab and today we'll take a look at the different types of printed circuits defects and what class of methods are used to analyze them. It should be noted that any printed circuits defects analysis is preceded by a thorough examination of the facts accompanying the detection of the failure and only after the engineers know what they're looking for, do they settle down to apply specific failure analysis techniques.


Using Electron Microscopy for Metallurgical Failure Analysis

Understanding why things fail is critical to preventing the failure in the future. Whether it is a single catastrophic failure whose root cause needs to be understood to prevent future critical failures or a test run of a prototype that is about to go to production understanding the root causes of a failure are essential.

Mechanical failures in particular can be complex and difficult to understand. When there is a mechanical failure of a material, several tests and images must be taken in order to understand the cause of the failure. Taking your sample to a lab with electron microscopy services can help you dig down further to find out where your failure might have occurred.


Choosing the Right Microelectronics Failure Analysis Lab

Computers used to take up entire rooms to perform what we would consider today rather rudimentary calculations. As computing power increased, the size of the computers decreased. What was once an easily spotted blown tube transistor became a very difficult to see electron leakage through a PNP junction.

Enter the world of microelectronics. Every mobile electronic device today is powered by microelectronics. They need to be small, fast and reliable. They also need to be durable. When things go wrong with them, we want to know what caused the failure and how it can be fixed to make our electronics as reliable as possible.


Scanning Electron Microscope - Explore the Nanoscopic World

The electronic compontent failure analysis process can be long and arduous, involving a wide variety of tools and techniques to uncover the root cause of a malfunction. Ultimately, however, the culminating moment of any investigation is the moment where an analyst can produce a clear, sharp photograph as incontrovertible evidence of the existence of a defect. Indeed, not only in failure analysis, but in any of the sciences, it can be said that "seeing is believing": a detailed picture can remove any shadow of doubt as to the nature of an object. In the case of failure analysis, a good image can help to identify the type of corrective action that must be implemented to resolve a recurring problem. Large defects, like those that result from severe electrical overstress, can often be seen clearly under an optical microscope; however, modern integrated circuits are built with geometries measured in terms of angstroms and nanometers, far below the resolution threshold of optical microscopy. Defects on these devices may be completely invisible under an optical microscope. For uncovering even the smallest defects, IAL offers electron microscopy services, providing a crisp, clear image of any anomaly imaginable.


IC Decapsulation - Exposing Semiconductor Devices for Analysis

Tie Die 2In their final, packaged form, many of the secrets of integrated circuits are concealed from an analyst looking to uncover a failure. While techniques like x-ray and acoustic microscopy can penetrate the shroud of mold compound and FR4 that enfold the semiconductor die at the heart of a device and reveal some information, they rarely tell the whole story; to truly determine the root cause of failure, an analyst almost always needs to be able to examine the device directly. This examination may take many forms - optical or electron microscopy may reveal a defect site, or elemental analysis tools may identify contaminants causing corrosion or other issues - so the techniques used to expose the semiconductor die must take into account the potential failure mechanisms that are most likely for any given device. IC decapsulation is the process - part art, part science - of breaking in to these devices to discover what defects might lie within.


An Approach to Capacitor Failure Analysis

The humble capacitor is one of the most fundamental components of any electronic assembly. These ubiquitous passive devices come in a variety of different flavors; whether formed using electrolytic fluids, metal foils, the metals and oxides of an integrated circuit, or any of a multitude of other materials, there is hardly a printed circuit assembly in the world without at least one capacitor mounted somewhere on its surface. Capacitors form the backbone of charge pumps, frequency filters, power conditioners, and many other common applications; since these components are so crucial to these operations, a malfunctioning capacitor can often cause complete failure of a system. At first blush, a capacitor would seem to be a fairly straightforward device to perform analysis on (after all, how complex can two electrodes separated by a thin dielectric be?), capacitor failure analysis poses unique challenges that must be met with equally unique approaches.


Electronics Component Failure Analysis - Isolating Failing Components

electronics component failure analysisThe modern electronics consumer is a demanding, discerning individual. The demands placed on any product are extensive; end users expect a wide range of functionality, with high reliability, at low cost. A device as ubiquitous as a smartphone is capable of facilitating transcontinental data transfer, displaying cutting edge graphics, and performing feats of mathematical might, all in a package small enough to fit into a pocket - and at a price point low enough not to empty said pocket. Modern electronic systems require hundreds, if not thousands, of components, all working together in concert to provide the functionality consumers have come to rely on; from the sheer computing power of a cutting-edge microprocessor to the simplicity of a passive capacitor, each component is vital to a device’s operation, since extraneous or redundant parts are trimmed during design in order to minimize costs. When one of these components fail - even one as minor as a surface mount resistor - a device can go from a modern marvel of technology to an extremely expensive inert hunk of plastic and metal. Determining why a device failed is often an excellent first step towards improving reliability of future generations of products;  electronic component failure analysis is therefore a key component in the race for continuous improvement of electronic devices.


Electron Microscopy Services for Intellectual Property Analysis

electron microscopy services Today’s cutting edge microelectronics are twisting, labyrinthine networks of nanotechnology, with layers upon layers of intertwined metallic and crystalline structures. Gone are the days when one could put a device under an optical microscope and, over the course of a few hours, sketch out a relatively accurate functional schematic; the process technology used in creating a modern microprocessor or memory device creates features so small that they are physically impossible to resolve with optical microscopy, since the wavelength of visible light is so much larger than the features being imaged. Higher resolution electron microscopes can easily resolve the nanometer-scale features on these devices, but the ultra-high magnifications needed to do so mean that only very small areas of the die can be viewed at a given time, an equally restrictive roadblock to understanding a circuit as a whole. Performing intellectual property analysis on a device in order to protect patents or reverse engineer obsolete parts which are no longer manufactured is, in many cases, an exercise in competing compromises; one can get a highly focused analysis with electron microscopy that is very limited in scope, or a very broad look at a device that may lack the necessary depth for certain investigations. Fortunately, IAL is offering new electron microscopy services that work to bridge the gap between viewing large areas and imaging at high resolution.


Technical Competitive Analysis Using Failure Analysis Tools

Metal12 01                The modern electronics and semiconductor markets are fiercely competitive. Manufacturers are constantly vying for supremacy, attempting to carve out a niche with novel, innovative approaches to fulfill the needs and wants of an increasingly demanding customer base. In such a rapidly changing, fast-paced environment, bringing a new product to market can be challenging, especially without any sort of knowledge of how the competition might measure up. Often, a manufacturer looking to break into the market will employ a third party to perform a technical competitive analysis – an in-depth look at the construction of a product that can provide insight into key details like process node, die size, and functional block size that can be used to perform cost and performance analyses. At first blush, technical competitive analyses appear completely separate from failure analysis services; in reality, the tools and techniques developed for finding defects on cutting-edge products translate seamlessly to the type of teardowns necessary to perform a deep dive into the minutiae of a product’s construction.


Solder Quality Inspections and Failure Analysis

While solder, the metallic alloy that is melted and reflowed to create joints between components and printed circuit boards, may not be as exciting and glamorous as the intricate webwork of copper and polysilicon in an integrated circuit, it is still vital to the creation of any electronic device. Without proper solder connections, even the most advanced of integrated circuits is reduced to an ineffectual paperweight, lacking any pathways for power and signals to travel over. Being able to perform a solder quality inspection is, therefore, an integral part of any failure analyst’s repertoire of skills.


Electronics Failure Analysis of Hermetic Packages

Failure analysis of consumer electronics can pose a wide variety of challenges, due to the multitude of different failure mechanisms that might befall a device. Environmental factors, mistreatment, and even the way that the device is packaged can contribute to the untimely demise of a device. While the vast majority of integrated circuits are packaged using a plastic or epoxy based mold compound, some high-reliability devices - especially those used in aerospace applications - are encased in hermetically sealed tombs of ceramic and metal. Performing electronic failure analysis of these hermetic packages poses a new set of challenges, as there are certain failure mechanisms and tests that are applicable only to this type of packaging.


A Study in Printed Circuit Board (PCB) Failure Analysis, Part 2

Continued from A Study in Printed Circuit Board Failure Analysis, Part 1

Printed Circuit Board Failure AnalysisThe next step in the failure analysis process, revealing the defect, would almost certainly involve destruction of the board; as a result, a strong hypothesis was necessary before embarking upon any further analysis. In order to determine the best course of action, our analyst reviewed the facts as they stood before proceeding.


A Study in Printed Circuit Board Failure Analysis, Part 1

Figure2 revAOver the course of a failure analyst’s career, they will be exposed to an extensive and varied array of devices. No matter the technology – whether they be nanoscopic silicon sensors with moving parts so small as to defy belief or massive circuit assemblies comprised of thousands of discrete components and integrated circuits – no device is completely immune to failure. Variations in process control, insufficiently robust designs, and extended abuse by an end user can all spell early doom for a device. In our introductory article, we took a high level overview of the failure analysis process, discussing the steps an analyst takes to turn a failing, rejected product into actionable knowledge for process improvement; in this column, we will see how these steps are applied to a specific failure. Naturally, examining a relatively trivial case would not provide the necessary depth of learning, so instead we choose to give an example of a failure many analysts dread: an intermittent failure on a printed circuit assembly.


Failure is the First Step on the Road to Success, Part 2

Continued from Failure Is The First Step on the Road To Success, Part 1

The Failure Analysis ProcessNon-destructive testing overlaps to a certain degree with the next step in the process, wherein an analyst attempts to isolate the failure to as small of an area as possible. This phase of the project may include both destructive and non-destructive aspects as necessary to locate a defect site. Some problems may be fairly simple to isolate, given the correct tools; a low resistance short between nodes of a board may be revealed in a matter of seconds using a thermal imaging camera, and the aforementioned cracked solder joint found during visual inspection can usually be probed for continuity with very little trouble. Other defects may require patience, a steady hand, and a methodical plan of attack; finding a leakage site on a PCB, for example, may require an analyst to cut traces (both on the surface of the PCB and buried within) in order to limit the number of possible locations for a defect.


Failure Is The First Step on the Road to Success - Part 1

The Failure Analysis Process                It is an inexorable fact of life that all electronic assemblies – from the most complex, densely interconnected systems to the cheapest mass-produced consumer devices – will eventually fail. Such devices may be victims of various forms of abuse at the hands of their end users, subjected to mechanical, environmental, or electrical stresses far beyond what any design engineer would consider reasonable. Some, especially early prototypes, may be inherently flawed and susceptible to malfunction as a result of a simple mistake made during one too many late night, bleary-eyed design review sessions, conducted over energy drinks and cold takeout. Of course, it is also possible for assemblies to simply die of old age; eventually, normal wear and tear will break down even the most robust of electronic devices. In all these cases, the result is the same (at least at a very high level): a device that no longer performs its intended function.


Electronic Device Failure Analysis – Printed Circuit Board Delayering

                If one were able to take a modern printed circuit board and examine the vast network of metal traces, completely unobscured by dielectric materials, one would find an intricate, three-dimensional lacework of finely interwoven metal threads. Thin filaments of copper, reminiscent of a spider’s web, snake outward from ring-shaped vias, while in other places metallic tributaries flow into the large bus lines which carry rushing rapids of electrons that provide power to the devices on the board. The many layers of the board taken as a whole bring to mind a futuristic highway system, with thousands upon thousands of individual pathways crossing over one another, routing traffic seamlessly from point to point. Unfortunately, this highway system is not always perfect; thin filaments may break, rushing rapids of electrons may overflow, and improperly built pathways eventually fail, turning these intricate patterns into tangled snarls sure to frustrate any user. In these cases, electronic device failure analysis can help to unravel the tangled web that was woven; one of many approaches that may be taken in these scenarios is printed circuit board delayering.


Failure Analysis of Electronic Assemblies – Investigating Solder Failures

               failure analysis of electronic assemblies Modern printed circuit assemblies are vastly complex labyrinths of interconnected devices, comprising many hundreds of components and thousands of individual signals being routed through the networks of metal, silicon, and dielectric material. While the individual integrated circuits on an assembly may steal most of the glory – just look at the buzz surrounding the processors inside the latest and greatest cell phone, video card, or supercomputer – interconnect technology is just as important to the success of a given product. To ensure a robust product, the reliability of the connections between individual components and the PCB that hosts them is paramount; to maximize this reliability, failure analysis of electronic assemblies to investigate solder failures is an excellent springboard to continuous improvement.


Electronics Failure Analysis Services – FIB Isolation and Editing

Imagine, if you will, a futuristic surgery theater. A surgeon sits before a sprawling bank of monitors showing images of her patient that have been magnified to sizes tens or hundreds of thousands of times larger than they would appear to her naked eye. She rests her fingers delicately on a panel of knobs, sliders, and joysticks, carefully adjusting each input to calibrate her instruments. A few moments of fine tuning and the target of her procedure crystallizes into focus: a microscopic defect that, despite its size, seriously threatens the patient’s life. She quickly drafts a surgical plan on the image; instead of forceps or a scalpel, she brings a tightly focused particle beam to bear, making infinitesimally small, precisely placed incisions isolating the anomalous target from its surroundings. A quick twiddle of the controls and the energy beam becomes a tool for reconstruction instead of excision; the surgeon deftly reroutes the affected parts of the patient’s anatomy to circumvent the faulty material, ensuring a full recovery. What may seem to be a scene ripped from the annals of schlocky science fiction may ring truer than one might expect, given one key disclosure: our patient is not a living being, but is rather an integrated circuit, wrought in silicon and metal. Our surgeon’s tool was a focused ion beam (FIB) system; the procedure she executed was not a heart bypass or tumor biopsy, but an example of FIB isolation and editing, one of many electronics failure analysis services offered by IAL.


Analyzing Semiconductor Failures - From Evidence to Root Cause

The culminating moment of triumph for any failure analysis project is when a defect is captured in all its glory - that instant where the noisy tangle of data and observations are crystallized into a coherent analysis due to the addition of one crowning piece of evidence. While it would seem that the final photograph, showcasing the defect that lies at the root of a failure, would draw a failure analysis project to a close, there is often still work left to do; in many cases, analyzing semiconductor failures requires an even deeper examination of the defect, to determine its most likely origin.


Search Our Site

Contact Us

Please type your full name.
Please type your full name.
Invalid phone format. Please use xx-xxx-xxxx
Invalid email address.
Invalid Input
Invalid Input

ISO-9001:2007 Certified

Follow Our Feed

Enter your email address:

Delivered by FeedBurner